

#### Excellence in Energy Management Jojobera Cement Plant

Team Members : Rajarshi Banerjee (HOD Production & Process) Sudhanshu Kumar (Maintenance) & Ramu Rao (CPP)



#### **NUVOCO** at a glance



- Nuvoco Vistas Corporation Limited is a building material company with Vision to build safer, smarter & sustainable world & Mission to become leading building materials company delivering superior performance
- Nuvoco stands as 5<sup>th</sup> largest cement group with a capacity of 25 MTPA by volume
- Its business is classified into three segments
   Cement, Ready mix concrete (RMX) &
   Modern building material (MBM)
- Nuvoco has 11 cement manufacturing plant across India & 58 RMX plant

#### **Introduction :- Jojobera Cement Plant**







#### **JCP Product portfolio**

- Production capacity 6.6 MTPA
- Plant commissioning 1994
- Main products are Portland Pozzolana Cement (PPC), Ordinary Portland cement (OPC-53) Portland Slag cement (PSC) & Portland Composite cement (PCC)
- Product mix %





#### **Plant Details**

| Grinding                                                                                               |           |            | Packing                                      |                         | СРР                        |  |  |
|--------------------------------------------------------------------------------------------------------|-----------|------------|----------------------------------------------|-------------------------|----------------------------|--|--|
| ✤ Roller Press                                                                                         | - 04 N    | los        | <ul> <li>Packer - 11</li> </ul>              | Nos                     | Installed Capacity - 27 MW |  |  |
| ✤ Ball Mill                                                                                            | - 02 N    | los        | ✤ Wagon Loading Platform - 03                | Nos                     | Soiler - 120 MT            |  |  |
| <ul> <li>Vertical Roller Mill</li> <li>O2 Nos</li> <li>Wagon Loading Machines</li> <li>32 N</li> </ul> |           | Nos        | <ul> <li>Turbine - 27 MW</li> </ul>          |                         |                            |  |  |
| <ul> <li>Wagon tippler</li> <li>O3 Nos</li> <li>Truck Loading Machines</li> <li>O8 N</li> </ul>        |           | Nos        | ✤ Generator - 30 MW                          |                         |                            |  |  |
| ✤ Coal Mill                                                                                            | - 02 N    | los        | <ul> <li>Locomotives - 05</li> </ul>         | Nos                     | Type - Thermal             |  |  |
| ✤ HAG                                                                                                  | - 03 N    | los        | <ul> <li>Railway Track lines - 32</li> </ul> | Km                      |                            |  |  |
| Product Line                                                                                           |           |            | Туре                                         |                         | Product/Capacity           |  |  |
| FG1                                                                                                    |           |            | RP                                           |                         | Ground slag                |  |  |
| FG2                                                                                                    |           | RP         |                                              |                         | Ground slag                |  |  |
| FG3                                                                                                    |           | Twin RP+BM |                                              |                         | Ground clinker/PPC         |  |  |
| FG4                                                                                                    | Ball Mill |            | PPC / PCC                                    |                         |                            |  |  |
| FG5                                                                                                    |           |            | VRM                                          |                         | Ground slag                |  |  |
| FG6 VRM                                                                                                |           | VRM        |                                              | CO grinding (PSC & CTO) |                            |  |  |
| СРР                                                                                                    |           |            | Thermal                                      | 27 MW                   |                            |  |  |

### **Major Equipment Details**



Wagon Tippler : 3 no's MAKE : 1 - TRF , 2 - Elecon , 3 - L&T **Company** CAPACITY :1-500 TPH, 2 –1200 TPH, 3–1600 TPH

> Roller Press : 4 no's[FG1, FG2, FG3A,FG 3B] MAKE : KHD CAPACITY : 75 TPH [< 2% Moisture]

Ball Mill : 2 no's [FG 3, FG 4] MAKE : FG 3- KHD, FG 4 – FLS CAPACITY : FG3 CLK – 140 TPH FG3 PPC – 210 TPH FG4 PPC – 140 TPH

COAL MILL : 2 no's MAKE – 1.ALSTOM 2. Loesche India CAPACITY – 15 TPH

AFTE



STACKER & RECLAIMER – 2 no's MAKE : 1-TAKRAF, 2- ALSTROM CAPACITY: Stacker – 1400 TPH, Reclaimer – 300 TPH



VRM : FG 5 & FG 6 MAKE : Loesche India CAPACITY: FG 5 Slag 230 TPH FG 6 Slag 250 TPH



PACKERS MAKE – FLS / Beumer – Total 11 nos (08 nos FLS & 03 nos Beumer) CAPACITY – 240TPH



CAPTIVE POWER PLANT CAPACITY – 27 MW [Thermal] Boiler : ISGEC -120 TPH Turbine : Siemens - 27 MW Generator : TDPS – 27 MW

#### **Jojobera Cement Plant**



# **Energy Conservation Data**



#### **Overall Cement SPC (kWh /MT)-with Packing**

| <b>FY-22</b> | FY-23 | S ■ FY-24 | Challenges                                                                 |
|--------------|-------|-----------|----------------------------------------------------------------------------|
|              | 37.3  |           | Line -1 HAG was operating with FO , with high                              |
| 36.9         |       |           | operating cost                                                             |
|              |       |           | LIW of FG-6 was unstable – coal fluctuation found                          |
|              |       |           | ☐ High wear & tear of mill internals of FG-6 mill                          |
|              |       | 34.9      | Frequent feed chute jamming of FG-5 high moisture in incoming raw material |
|              |       |           | Frequent jamming of FG-4 mill inlet                                        |
|              |       |           | High moisture of raw material                                              |
|              |       |           | 2.5 km long material handling circuit                                      |

### **Overall Cement SPC (kWh /MT)**





#### Action taken to minimize SPC

□ Formation of CFT (Cross functional team) to analyze data on daily basis & implementing with new ideas.

Optimized VRM (FG#6) Table & fan power by modifying scatter ring & hot air deflecting plate at mill inlet

Reduction of Ball mill power by optimizing ball charging pattern

□ Minimized false air ingress in FG#5 & FG#6 by regular identification & corresponding correcting the ingress sources.

GFG#5- Feed chute replacement with mirror finished plate

□ Managing product balance line wise

Optimized compressed air consumption by segregating shop wise

□ Managed equipment idling & Shutdown power tracking

□ Review of all Process fans & optimization





### FG#6 Mill packed power (kWh /MT)





### **FG#6 : Action taken to reduce SPC**

- Removal of support roller from mill
- □ Modification of nozzle ring & scattered ring (Fan power dropped down from 1700 Kw to

#### 1250 Kw)

- □ Reduction in false air across mill <10 % & bag house < 5%
- □ Reduction of bag house header pressure & increased pause time
- Table profiling as per wear based
- Optimized ID fan power
- □ Minimized classifier seal ring gap @ 8 mm
- □Modification in feed chute ,liners & installation of air blasters

### **FG#5 Mill shop power reduction**







### FG#4 – Ball mill shop power

NUVOCO Shaping a new world



### **FG#4 : Action plan to reduce SPC**

- Optimized ball charge
- □Modify mill feed inlet chute to avoid inlet jamming & using of 100% chemical gypsum
- Optimized bag house ON & OFF time based on the product mix
- Develop & optimized partition wall wind screen
- □Modify feed scoops in 2<sup>nd</sup> chamber
- □Installation of permanent magnet at mill feed belt to avoid contamination with foreign material
- □100 % uses of fly ash at mill outlet

#### FG#3 – Ball mill shop power



Shaping a new world



### FG#3 : Action plan to reduce SPC

Optimized mill with fine ball charge

Modification of V-separator air distribution part to utilize its bottom part

Optimized bag house ON & OFF time

□Installation of VFD at separator vent bag filter fan

Optimized roller gaps for clinker grinding

□Installation of permanent magnet at mill feed belt to avoid feed contamination with foreign material

### **Specific Heat Consumption (kCal/kg)**







### Action taken to reduce SHC (kCaL/kg)

□ Modification of FG#5 Coal HAG

□Installation of coal HAG replacing FO based HAG in line 1

**Reduction of false air in the system** 

Connectivity of slag HAG replacing oil based HAG for coal mill 2

□ Heating insulation across V-separator in FG#1 & 2

Usage of 100% Indian coal in coal HAG

#### SUMMERY OF MAJOR PROJECTS TAKEN FOR ENERGY CONSERVATION



| FY         | No of<br>Energy<br>saving<br>projects | Investment<br>(INR Million) | Electrical savings<br>( Million kWh) | Thermal savings<br>( Million Kcal) | Total Savings<br>( INR Million) | SHC (Electrical<br>kWh /MT<br>cement or<br>Kcal/Kg<br>cement) |
|------------|---------------------------------------|-----------------------------|--------------------------------------|------------------------------------|---------------------------------|---------------------------------------------------------------|
| FY 2021-22 | 05                                    | 3.5                         | 5.12                                 | -                                  | 35.84                           | 0.3 kWh/T                                                     |
| FY 2022-23 | 06                                    | 65.5                        | 1.46                                 | 8.9                                | 115.2                           | 7 kCal/kg &<br>0.5 Kcal/T                                     |
| FY 2023-24 | 05                                    | 73.5                        | 5.58                                 | 22.5                               | 226.1                           | 15 kcal/kg &<br>2.2 kWh/T                                     |

**TOTAL SAVINGS (INR Million) = 377.1** 



### **ENERGY SAVINGS PROJECTS FY 22**

| Title of Project                                             | Annual<br>Electrical Saving | Annual<br>Thermal<br>Saving | Investment         | Estimated<br>Payback | Comment     |
|--------------------------------------------------------------|-----------------------------|-----------------------------|--------------------|----------------------|-------------|
|                                                              | (Million kWh)               | (Million Kcal)              | (Rs in<br>Million) | (months)             |             |
| Installation of 4 VFDs in Packing Plant                      | 0.2                         | -                           | 3.5                | 10                   | Implemented |
| VRM[FG#6]-Optimization                                       | 0.3                         | -                           | -                  |                      | In house    |
| Installation of 4 nos. high efficiency fans in FG1,2,3A & 3B | 4.5                         | -                           | 4                  | 20                   | Implemented |
| Modification of feed chute in FG1,2                          | 0.1                         | -                           | -                  |                      | In house    |
| Installation of LED lights                                   | 0.02                        | -                           | 0.8                | 24                   | Implemented |



### **ENERGY SAVINGS PROJECTS FY 23**

| Title of Project                                                               | Annual<br>Electrical<br>Saving | Annual<br>Thermal<br>Saving<br>(Million | Investme<br>nt<br>(Rs in | Estimate<br>d<br>Payback<br>Period | Comment     |
|--------------------------------------------------------------------------------|--------------------------------|-----------------------------------------|--------------------------|------------------------------------|-------------|
|                                                                                |                                | Kcal)                                   | Million)                 | (months)                           |             |
| Modification of coal HAG in FG5                                                | -                              | 8.9                                     | 50                       | 4                                  | Implemented |
| Feed chute modification in FG6                                                 | 0.52                           | -                                       | -                        | -                                  | In-house    |
| Reactive power management                                                      | 0.9                            | -                                       | 0.3                      | 6                                  | Implemented |
| Connectivity of slag HAG with coal HAG in FG#6 mill                            | 0.02                           | -                                       | -                        | -                                  | In-house    |
| Installation of new bag filter to improve process productivity in FG#3-567 BF6 | 0.01                           | -                                       | 0.8                      | 12                                 | Implemented |
| Optimization of HAG of FG#1 & FG#2                                             | 0.01                           | -                                       | -                        | -                                  | In-house    |



### **ENERGY SAVINGS PROJECTS FY 24**

| Title of Project                                            | Annual<br>Electrical<br>Saving<br>(Million | Annual<br>Thermal<br>Saving<br>(Million | Investment<br>(Rs in | Estimated<br>Payback<br>Period<br>(months) | Comment     |
|-------------------------------------------------------------|--------------------------------------------|-----------------------------------------|----------------------|--------------------------------------------|-------------|
|                                                             | KVVN)                                      | ксат)                                   | Million)             |                                            |             |
| Installation of coal HAG replacing HFO based HAG in line 1  | -                                          | 22.5                                    | 70                   | 3                                          | Implemented |
| Modification of scattered ring in FG#6 mill                 | 4.4                                        | -                                       |                      |                                            | Inhouse     |
| Installation of VFD in packing plant bag filter fans        | 0.18                                       | -                                       | 3.5                  | 4.3                                        | Implemented |
| Mill inlet chute & blaster nozzle modification in FG#4 mill | 0.60                                       | -                                       |                      |                                            | In house    |
| De-rating of FG6 ID fan from 3600 kW to 2500<br>kW          | 0.4                                        | -                                       |                      |                                            | Implemented |



### **ENERGY SAVINGS PROJECTS FY-25**

| Title of Project                                             | Annual<br>Electrical<br>Saving<br>(Million kWh) | Annual<br>Thermal<br>Saving<br>(Million Kcal) | Investment<br>(Rs in<br>Million) | Estimat<br>ed<br>Paybac<br>k<br>Period<br>(month<br>s) | Comment     |
|--------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|----------------------------------|--------------------------------------------------------|-------------|
| Installation of VRM 5200 Kw motor replacing<br>4300 Kw motor | 0.3                                             | -                                             | 12                               | 2.1                                                    | Implemented |
| Change of FG#6 ID fan motor with de-rated KW                 | 0.15                                            | -                                             | 7                                | 2.7                                                    | Implemented |
| Modifications of scattered ring in FG#5 mill                 | 0.3                                             | -                                             | -                                | -                                                      | In-house    |
| Installation of Solar project / power                        | 30                                              | -                                             | 110                              | 24                                                     | Way forward |
| Reduction of plant lighting load by 10%                      | 0.01                                            | -                                             |                                  |                                                        | In house    |
| PCC production project through FG#6 mill                     | 0.06                                            | -                                             | 50                               | 24                                                     | Way forward |



### **Cement SPC (kWh/MT) Vs Target in FY25**



#### Top 3 Innovative projects





- Replacement of FO based HAG with coal HAG (Savings of 18.7 Cr/Annum)
- Modification of FG#5 HAG for usage of high ash coal
- (Savings of 10.5 Crs/Annum)
- Modification of Scattered ring in FG#6 mill
  - (Savings of 2.5 Crs /Annum )

### **FG 6 Mill- Process innovative**



JCP FG 6 mill has recorded lowest ever specific power consumption of **31.6** kWh/ MT (packed power) of cement in the month of Mar'**24** by maximizing throughput and optimized table & fan power





#### **Action taken**

- Optimized operational parameter to maximize mill TPH, reduction of fan & mill power
- Optimized nozzle open area
- Table profiling along with replacement of Tyre
- Installation of mirror finish plate at mill feed chute
- Removal of support rollers from mill
- Modifications of all major discharge chute to maximize mill throughput
- Minimized false air ingress across mill & bag house



## **Captive power plant**

#### **CPP-Sustainable Plant Performance**

Shaping a new world





### **Energy Savings Projects with No Investment**

| SN | Energy Saving Projects                                                                                                         | Saving Achieved<br>Electrical Energy<br>(Rs. Lacs) | Saving Achieved<br>Thermal Energy<br>(Rs. Lacs) |
|----|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------|
| 1  | To reduce auxiliary power by operating BFP through PID logic-BFP with auto drum pres. Set point (+ 6 to 7 Kg/Cm <sup>2</sup> ) | 29.93                                              | -                                               |
| 2  | Reduction in auxiliary power consumption by reducing inst air pressure (7.2 BAR to 6.0 BAR)                                    | 3.20                                               | -                                               |
| 3  | To optimize air consumption of coal<br>Handling circuit.                                                                       | 3.0                                                | -                                               |
| 4  | Reduction in LOI by 0.5 % with reject coal firing<br>From 2.1% to 1.6% )                                                       | -                                                  | 22.7                                            |
| 5  | Reduction in Heat rate by maintaining ACC vacuum with auto<br>PID through ACC fans                                             | -                                                  | 5.40                                            |
| 6  | PA Fan suction duct modified (Reduced by 2.8 M)                                                                                | 19.70                                              | -                                               |
| 7  | SA Fan suction duct modified (Reduced by 2.8 M)                                                                                | 11.15                                              | -                                               |
| 8  | Plant run with single compressor by optimize distribution line<br>@ user area                                                  | 36.63                                              | -                                               |

#### **Energy Savings Projects with No Investment**



| SN | Energy Saving Projects                                                                      | Saving Achieved<br>Electrical Energy<br>(Rs. Lacs) | Saving Achieved<br>Thermal Energy<br>(Rs. Lacs) |
|----|---------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------|
| 9  | Reduction in Aux. Power Consumption by auto set point of CEP discharge pressure through PID | 3.90                                               | -                                               |
| 10 | Optimize package AC running hours ( stopped 2 out of 9 )                                    | 8.27                                               | -                                               |
| 11 | ACC Fan blade angle reduced for winter season<br>(17 Deg to 12 Deg)                         | 4.49                                               | -                                               |
| 12 | SA Fan - Secondary Air fan running optimize<br>(Stopped one fan >60% load)                  | 3.45                                               | -                                               |
| 13 | Optimize CHP running hrs by in-house modification of<br>Crusher hammer bar                  | 2.10                                               |                                                 |
|    | Saving                                                                                      | 126.12                                             | 28.10                                           |

#### **Energy Savings Projects with Investment**



#### **Total Saving with All Projects in last 03 years is 175.62 Lacs**



### **Reduction in H/R by auto operation of fan**

#### **Opportunity:**

Reduction in Heat rate through optimization of ACC Vacuum.

#### Approach:

We have 08 Module Air cooled condenser for condensing the Turbine exhaust steam with design ambient temperature 42 °C. We were operating 04 fans on full speed and stopping the other fans when ambient temp. is low for saving aux power and not utilizing the total heating surface area of the ACC.

A cross functional team formed and after brain storming it was decided to utilizing total heating surface area of ACC and keep start all fan with auto PID loop with vacuum set point

#### Results:

Vacuum increased by -0.03 Kg/cm2 with same Aux power.

Heat Rate reduced by 15 Kcal/kwh and saving of 32.07 Lac.

#### Plant Illumination optimizaztion.



#### **Opportunity:**

The Lights of TG building were ON/OFF according to the Timer Settings and it was observed that sometimes illumination level in TG building becomes very poor (Below Safety Norms) due to bad weather conditions and in that situation lights has to be ON manually for proper illumination.

#### Approach:

After brain storming it is concluded that if lighting of TG building area will be ON/OFF according to Lux Level then problem could be rectify.

Procured& installed a LDR (Light Dependent Resistor), which control the lighting circuit according to the illumination level.

#### **Results:**

Auto switch ON/OFF of area lighting to maintain the illumination level, According to weather conditions.

Power saving of 0.4 KWh



#### **Emission Intensity & Clinker factor**



#### Award received in recent years





National Award for Manufacturing Competitiveness (NAMC) by International Research Institute for Manufacturing (IRIM)











CARE



OPERATIONAL EXCELLENCE

INTEGRITY

ENTREPRENEURSHIP

COLLABORATION